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We study a nonlinear q-voter model with stochastic noise, interpreted in the social context as independence, on
a duplex network. To study the role of the multilevelness in this model we propose three methods of transferring
the model from a mono- to a multiplex network. They take into account two criteria: one related to the status
of independence (LOCAL vs GLOBAL) and one related to peer pressure (AND vs OR). In order to examine the
influence of the presence of more than one level in the social network, we perform simulations on a particularly
simple multiplex: a duplex clique, which consists of two fully overlapped complete graphs (cliques). Solving
numerically the rate equation and simultaneously conducting Monte Carlo simulations, we provide evidence that
even a simple rearrangement into a duplex topology may lead to significant changes in the observed behavior.
However, qualitative changes in the phase transitions can be observed for only one of the considered rules:
LOCAL&AND. For this rule the phase transition becomes discontinuous for q = 5, whereas for a monoplex such
behavior is observed for q = 6. Interestingly, only this rule admits construction of realistic variants of the model,
in line with recent social experiments.
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I. INTRODUCTION

Opinion dynamics is one of the most investigated sub-fields
of sociophysics [1–4]. Subjectively, there are at least two
important reasons why physicists study this topic. The first
motivation comes from social sciences and can be described
as a temptation to build a bridge between the micro and macro
levels in describing social systems. Traditionally, there are
two main disciplines that study social behavior: sociology
and social psychology. Although the subject of the study is
the same for both disciplines, the approaches usually taken
are very different. Sociologists study social systems from
the level of the social group whereas social psychologists
concentrate on the level of the individual [5]. From the
physicist’s point of view this is similar to the relationship
between thermodynamics and statistical physics. This analogy
raises the challenge to describe and understand the collective
behavior of social systems (sociology) from the level of
interpersonal interactions (social psychology). The second
motivation to deal with opinion dynamics is related to the
development of nonequilibrium statistical physics. Models of
opinion dynamics are often very interesting from the theoreti-
cal point of view [6]. One of the best examples is the famous
voter model or, the recently introduced, nonlinear q-voter
model [7]. Both models are based on dichotomous opinions
and belong to a wide class of binary-state dynamics [1,8–10].
It should be stressed here that binary opinions are natural
from the social point of view, since the dichotomous response
format with 1 (yes, true, agree) and 0 (no, false, disagree)
as response options is one of the most common in social
experiments [11,12].

Among many other binary opinion models [2–4], the
q-voter model is not only interesting from theoretical point
of view, but also justified from the social point of view. In
short, within the q-voter model each individual interacts with
a set of q neighbors (a q-lobby) and if all q neighbors share
the same state (i.e., the q-lobby is unanimous), the individual
conforms to this state. As originally proposed, in the other case
(disagreement) the individual changes its state with probability
ε [7]. However, in some later publications the model with

ε = 0 was studied, as a natural generalization of the Sznajd
model [13–15]. The unanimity rule can be justified based on
social experiments. It has been observed in number of experi-
ments that a small unanimous group may be more efficient than
a much larger group with a nonunanimous majority [5]. In a
classical series of experiments on conformity, Asch [16] found
that the presence of a social supporter reduced conformity
dramatically: participants of the experiment were far more
independent when they were opposed by a seven person
majority and had a partner sharing the same opinion than when
they were opposed by a three-person majority and did not have
a partner. Influence of a consistent minority on the responses
of a majority has been reported by Moscovici et al. [17].
Also, recent neurological experiments suggest that unanimous
opinions may be critical for normative influence [18].

From the physicist’s point of view the q-voter model is
interesting because of the rich behavior related to phase
transitions [7,13,19] as well as the controversy related to
the exit probability of the model [14,15]. In this paper
we will focus on phase transitions driven by stochastic
noise which—in the social context—may be interpreted as
independence [13,20]. In social psychology, independence
is recognized as one of the two types of nonconformity
and means resisting influence [21]. It has been noticed that
independence plays a role similar to the temperature and
introduces order-disorder phase transitions [20]. Interestingly,
it has been shown that, in the case of a complete graph,
the phase transition changes its type from continuous to
discontinuous for q � 6 [13,20].

Until now, the q-voter model has been studied on monoplex
networks, i.e., networks that consist of only one level.
However, as noted recently, interactions among individuals
can be of qualitatively different nature and therefore modeled
by multilevel networks [22]. In the last two years, a lot of
attention has been devoted to the analysis of various dynamics
on multiplex networks, including diffusion processes [23], epi-
demic spreading [24–26], and voter dynamics [27]. Brummitt
et al. [28] have generalized the threshold cascade model on
complex networks [29]. In [30] they further expanded the
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model and introduced the idea of OR and AND nodes. An OR
node is activated as soon as a sufficiently large fraction of
its neighbors are active in at least one level. An AND node
is activated only if in each and every layer a sufficiently large
fraction of its neighbors are active. We will use a related notion
of OR and AND types of social influence.

Without doubt most real-world social networks consist of
many levels. For instance, a student may belong to a network of
classmates, a network of sport-club teammates, and a network
of Facebook friends. The question is if this multilevelness is
important for the macroscopic (or global) properties of the
social system, such as public opinion, or not. The general
answer to this important question is beyond the scope of this
paper. Instead we try to answer the question within the q-voter
model that takes into account two types of response to social
influence: conformity and independence.

The remainder of this paper is organized as follows. In
Sec. II, we briefly recall the q-voter model on a single mono-
plex clique. We extend this framework to multiplex cliques in
Sec. III and propose three rules (GLOBAL&AND, GLOBAL&OR,
and LOCAL&AND). In Sec. IV we derive rate equations that
describe the time evolution of the system, for each of the
three rules. Furthermore in Sec. V, based on these equations,
we derive phase diagrams and compare results obtained from
analytical equations with those obtained from Monte Carlo
simulations. The next section is devoted to a deeper analysis
of the phase transitions. In Secs. VII and VIII we go beyond the
duplex clique to check to what extent our results are universal.
Finally, in Sec. IX we wrap up the results and conclude.

II. THE q-VOTER MODEL ON
A SINGLE MONOPLEX CLIQUE

In [13] we introduced the q-voter model with two types
of stochasticity that, using the language of social sciences,
could be interpreted as two kinds of nonconformity, namely
anticonformity and independence [21]. In [20] we equated an-
ticonformity with antiferromagnetic interactions, since in both
cases a voter takes an opposite state to the majority. According
to social psychologists, anticonformity is similar to conformity
in the sense that in both cases an individual takes cognizance
of the group norm; in the case of conformity agreeing with the
influence group and in the case of anticonformity disagreeing.
In contrast, in the case of independence the situation is not
based on the opinions of others; in [20] we equated this type
of nonconformity with temperature. In this case a voter takes
a random state, independently of the group of influence.

Very recently another variant of independence—inflexible
zealots—has been studied within the q-voter model [31]. In
this version of the model, a susceptible voter adopts the opinion
of a neighbor if this neighbor belongs to a group of q neighbors
all in the same state, whereas inflexible zealots never change
their opinion. There are two main differences between the
approaches proposed in [13] and [31]. First of all, in [13]
independence allows a voter to change a state with probability
1
2 , whereas in [31] independence means the absence of any
changes. Both approaches are special cases of a more general
idea of independence, introduced originally for the Sznajd
model in [32], where in the case of independence a voter
could change its state with probability f . This general idea of

independence has been recently used in a three-state kinetic ex-
change opinion model [33]. The second difference between the
approaches proposed in [13] and [31] is related to the person
vs situation response to social influence [34]. In [31] a person-
oriented approach has been used; i.e., each agent has been
permanently assigned to one of two types: susceptible (con-
formist) or inflexible zealot (independent). In contrast, in [13]
the situation-oriented approach has been used; i.e., the same
agent could be independent in a given time step (with a certain
probability) and behave like a conformist in the next moment.

Although the situation-oriented approach may seem unre-
alistic for some readers, surprisingly it is far more realistic
than the person-oriented approach for many social processes;
as has been shown in numerous experiments, a situation
can almost completely prevail over personality [5]. On the
other hand, personality psychologists argue that personality
attributes not only exist but also shape how individuals adapt to
the challenges of life [35]. In fact, there has been a longstanding
and vigorous discussion on this topic among psychologists,
known as the person-situation debate. From the empirical
(experimental) point of view the situation-oriented approach is
much better motivated; however, from the theoretical point of
view both approaches are interesting; see [34] for a discussion
in the context of agent-based modeling.

It turns out that the q-voter model with situation-oriented
independence is not only better motivated, but also more
interesting from a modeling point of view as it exhibits a
regime-switching (or phase transition-type) behavior. There-
fore it is also used in this paper. Before we proceed with
describing the model on a duplex clique, let us briefly recall
its formulation on a monoplex complete graph. In this case
we consider a set of N individuals, which are described by
the binary variables Si = ±1 (spins “up” or “down”). At each
elementary time step t we randomly choose an ith node (i.e.,
a voter) and a q-lobby, which is a randomly picked group
of q individuals. Only if the q-lobby is self-consistent can
it influence the voter. With probability 1 − p the q-lobby
(if it is homogeneous) acts on the state of the voter, which
means that the voter changes state to the state of the q-lobby.
With probability p the voter behaves independently: with equal
probabilities flips to the opposite direction Si(t + 1) = −Si(t)
or keeps its original state Si(t + 1) = Si(t). Therefore only the
following changes are possible:

↑ · · · ↑︸ ︷︷ ︸
q

⇓ 1−p−→ ↑ · · · ↑︸ ︷︷ ︸
q

⇑,

↓ · · · ↓︸ ︷︷ ︸
q

⇑ 1−p−→ ↓ · · · ↓︸ ︷︷ ︸
q

⇓,

(1)
· · ·︸︷︷︸
q

⇓ p/2−→ · · ·︸︷︷︸
q

⇑,

· · ·︸︷︷︸
q

⇑ p/2−→ · · ·︸︷︷︸
q

⇓,

where a single-line arrow represents the state of a node
belonging to the q-lobby, while the state of the voter is marked
with a double-line arrow. Lines 1 and 2 in (1) correspond to
conformity, which occurs with probability (1 − p) and has the

052812-2



PHASE TRANSITIONS IN THE q-VOTER MODEL WITH . . . PHYSICAL REVIEW E 92, 052812 (2015)

ability to change the state of the voter only when all spins in the
q-lobby (single-line arrows) are in the same state. Lines 3 and 4
in (1) describe independence, which occurs with probability p.
In such a case the voter behaves randomly, i.e., independently
of the q-lobby flips with probability 1

2 to the opposite direction
or does not change with the same probability. Cases where the
state of the voter does not change are not shown.

It has been shown that the system, described by the q-voter
model with independence, undergoes the phase transition at
p = pc(q). For p < pc the majority coexists with the minority
opinion (ordered state) and for p > pc there is a status
quo (disordered state) [13]. Interestingly, it occurrs that for
q � 5 the phase transition is continuous, whereas for q > 5 it
becomes discontinuous.

The most natural quantity that describes the macroscopic
behavior of such a system is magnetization, which from the
social point of view represents so called public opinion:

m(t) = 1

N

N∑
i=1

Si(t). (2)

Moreover, in the case of a complete graph, the magnetization
fully describes the state of system. In this paper we will
calculate it in two ways: by Monte Carlo simulations of the
microscopic system of the size N and by numerical solution
of the equation describing the time evolution of the average
magnetization. In the case of the Monte Carlo simulations we
will calculate the ensemble average of the magnetization in
the stationary state:

〈m〉 = 1

M

M∑
j=1

mi, (3)

where mi denotes the stationary value of the magnetization in
the ith realization (sample) and i = 1, . . . ,M . In this paper we
average all Monte Carlo results over M = 103 samples.

III. THE q-VOTER MODEL ON A DUPLEX CLIQUE

Let us start by defining a duplex clique, which is a particular
case of a multiplex. Specific definitions of multiplex networks
have been introduced in [22,36,37]. Such systems consist of
distinct levels (layers), and the interconnections between levels
are only between a node and its counterpart in the other layer
(i.e., the same node). Here we consider a duplex clique (see
Fig. 1), i.e., a network that consists of two distinct levels
(layers), each of which is represented by a complete graph (i.e.,
a clique) of size N . Levels represent two different communities
(e.g., Facebook and school class), but are composed of exactly
the same people: each node possesses a counterpart node in
the second level. Such an assumption reflects the fact that
we consider fully overlapping levels, which is an idealistic
scenario. We also assume that each node possesses the same
state on each level, which means that the society consists of
nonhypocritical individuals only.

It is worth stressing the difference between a duplex clique
and two inter-onnected monoplex cliques (see Fig. 2), where
the state of a node on one level is not directly related to the
state of a node in the second layer. In interconnected monoplex
cliques the interclique links fulfill the same role as intraclique

FIG. 1. (Color online) The topology of a duplex clique, i.e., a
network that consists of two distinct levels (layers), each of which
is represented by a complete graph (i.e., a clique) of size N . Levels
represent two different communities but are composed of exactly the
same people: each node possesses a counterpart node in the second
level. Interconnections between levels (denoted by the gray dashed
lines) are realized exclusively by connecting the node with its own
counterpart (i.e., the same node) on the other level. Links within a
single level (black solid lines) represent some kind of social relation
(e.g., friendship).

edges. Classical voter models were analyzed on interconnected
cliques in [38,39].

In this paper we investigate the q-voter model on a duplex
clique. As in the case of the monoplex, we consider a set of N

individuals described by the binary variables Si = ±1, which
are the same on both levels. On each level all individuals are
connected with each other and therefore create a duplex clique,
as shown in Fig. 1.

We consider two criteria of level dependence: one related to
the status of independence (GLOBAL vs LOCAL) and one related
to peer pressure (AND vs OR) (see also Table I):

FIG. 2. (Color online) The topology of two interconnected
monoplex cliques. This network consists of two levels, each of which
being represented by a complete graph of size N . Levels represent two
different communities and are composed of different people. Links
within a single level are equal to the connections between levels
(black solid lines) and represent some kind of social relation (e.g.,
friendship).
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TABLE I. Three versions of dynamics on the multiplex clique.
We do not consider the LOCAL&OR rule because of the difficulty of
such a concept related to social unreality and algorithmic ambiguity.

AND OR

Global independence (i) GLOBAL&AND (ii) GLOBAL&OR
Local independence (iii) LOCAL&AND

(1) Criteria related to the status of independence: the
GLOBAL rule means that an agent is independent on both
levels, but the LOCAL rule admits a situation where a person is
independent in one clique but not in the other.

(2) Criteria related to the peer pressure: the AND dynamics
is more restrictive and a node changes its state only if both
levels suggest changes; in the OR variant one level is enough
to change the state of an individual.

Finally we propose the following three rules:
(i) GLOBAL&AND – global independence and the AND rule

(see an example in Fig. 3).
With probability p the voter is independent and with 1 − p

behaves like a conformist regardless of the level. In the case
of independence the voter changes its state to the opposite
one with probability 1/2 (we automatically change the state of
the voter on both levels). In the case of conformity the voter
changes its state only when both q-lobbies (i.e., on the first and
on the second level) are homogeneous and both have the state
opposite to the state of the voter. Therefore only the following
changes are possible:

↓ · · · ↓
↓ · · · ↓ ⇑ 1−p−→ ↓ · · · ↓

↓ · · · ↓⇓,

↑ · · · ↑
↑ · · · ↑ ⇓ 1−p−→ ↑ · · · ↑

↑ · · · ↑⇑,

(4)· · ·
· · · ⇓ p/2−→ · · ·

· · ·⇑,

· · ·
· · · ⇑ p/2−→ · · ·

· · ·⇓,

FIG. 3. (Color online) The GLOBAL&AND rule: a voter is indepen-
dent regardless of the level with probability p and is subjected to
peer pressure with probability 1 − p only if q-panels on both levels
are self-consistent. In this example, on level 1 the q-lobby (agents in
circles) is homogeneous but on level 2 the lobby is not self-consistent.
Therefore the voter will not change its state under peer pressure.
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q=4 MONOPLEX
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q=2 GLOBAL&AND 
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FIG. 4. (Color online) A comparison between the q-voter model
on the monoplex clique (full symbols) and the q-voter model with
the GLOBAL&AND rule on the duplex clique (empty symbols); the
GLOBAL&AND rule leads to a trivial result, identical with the monoplex
case for a doubled value of q. An ensemble average 〈m〉 of the
magnetization, as a function of the stochastic noise p, was obtained
by Monte Carlo simulations for a system of size N = 104.

where a single-line arrow represents the state of a node
belonging to the q-lobbies; arrows in the numerator represent
states of the nodes belonging to the q-lobby chosen on the first
level and arrows in the denominator those on second level; the
voter’s state is marked by a double-line arrow.

We should comment here that the q-voter model with the
GLOBAL&AND rule and q = q2 on the duplex clique is equivalent
to the q-voter on the monoplex clique with q = q1 = 2q2 (i.e.,
a monoplex clique with a q-lobby size twice as large as in the
duplex case). This is visible in Fig. 4 where we compare the
Monte Carlo simulations obtained for the duplex with those
obtained for the monoplex topology.

(ii) GLOBAL&OR – global independence and OR rule (see an
example in Fig. 5).

Here, similarly as in the GLOBAL&AND rule, the status of
independence is the same for both levels. With probability p

the voter is independent and changes its state to the opposite
one with probability 1/2. With probability 1 − p the voter
behaves like a conformist and its state is dependent on both
q-lobbies. In contrast to AND dynamics, now the voter changes
its state to the opposite one even when only one q-lobby is
self-consistent and the second is not. In the situation when
two q-lobbies are homogeneous but not in agreement, i.e., one
q-lobby supports the voter and second suggests to change its
state, the voter becomes confused and stays in its old state:

↑ · · · ↑
↓ · · · ↓ ⇑ 1−p−−−−−→

conf used

↑ · · · ↑
↓ · · · ↓ ⇑ . (5)

All situations that lead to change are shown below:

↓ · · · ↓
↓ · · · ↓ ⇑ 1−p−→ ↓ · · · ↓

↓ · · · ↓⇓,

↑ · · · ↑
↑ · · · ↑ ⇓ 1−p−→ ↑ · · · ↑

↑ · · · ↑⇑,
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FIG. 5. (Color online) The GLOBAL&OR rule: a voter is indepen-
dent regardless of the level with probability p and is subjected to peer
pressure with probability 1 − p if at least on one level the q-panel
is self-consistent. In this example, on level 1 the q-lobby (agents in
circles) is homogeneous and has the state opposite to the state of the
voter (an agent in the square). Simultaneously, on level 2 the q-lobby
is not self-consistent. Therefore the voter is not confused by two
opposite q-lobbies and is influenced by the first q-lobby.

↓ · · · ↑
↓ · · · ↓ ⇑ 1−p−→ ↓ · · · ↑

↓ · · · ↓⇓,

↓ · · · ↑
↑ · · · ↑ ⇓ 1−p−→ ↓ · · · ↑

↑ · · · ↑⇑,

↑ · · · ↑
↓ · · · ↑ ⇓ 1−p−→ ↑ · · · ↑

↓ · · · ↑⇑,

↓ · · · ↓
↓ · · · ↑ ⇑ 1−p−→ ↓ · · · ↓

↓ · · · ↑⇓,

· · ·
· · · ⇓ p/2−→ · · ·

· · ·⇑,

· · ·
· · · ⇑ p/2−→ · · ·

· · ·⇓. (6)

(iii) LOCAL&AND – local independence and AND rule (see
an example in Fig. 6).

In this case the independence is related to the level, i.e.,
we run dynamics separately on each level. It means that a
voter is independent on the first level with probability p and
with probability 1 − p behaves as a conformist; it is under the
influence of the q-lobby on this level. The same situation is on
the second level, where regardless of the first level we choose
if the voter behaves independently or conforms the q-lobby on
the second level. Finally we change the state of the voter only
when both separated dynamics result in the same state.

We do not consider the LOCAL&OR rule because of the
difficulty of such a concept related to social unreality and
algorithmic ambiguity.

We would like to stress that we are aware that the
topology we consider here is very artificial and not suitable
to describe many real social systems. We have chosen this
topology mainly because it allows for analytical treatment
(see Sec. IV). Moreover, until now the q-voter model with
independence has been systematically analyzed only on the
complete graph [13,20], and a duplex clique seemed to be
a natural extension that would allow for a straightforward

FIG. 6. (Color online) The LOCAL&AND rule: a voter is indepen-
dent separately on each level with probability p and subjected to peer
pressure separately on each level with probability 1 − p. It means
that on each level independently the voter (in the square) can be
in one of three possible states: +1 with probability p/2, −1 with
probability p/2, and in a state suggested by the q-lobby (in circles)
with probability 1 − p. In this example, the q-lobby is homogeneous
on the first level and therefore it influences the voter. On level 2 the
q-lobby is not self-consistent and therefore there is no peer pressure.
Finally, there are nine possible pairs that represent states on the first
and on the second level; see the numbers in the corners of squares in
the bottom line. The voter changes its state only if states, obtained
independently on each level, are the same; see all possible final states
of the voter in the bottom line.

comparison with the previously obtained results. On the other
hand, the ideas discussed here allow us to investigate the model
on an arbitrary multiplex, because each level can potentially
be represented by a different complex network. Results for
selected network topologies will be also discussed in Sec. VIII,
although they are not the primary goal of this paper.

IV. THE TIME EVOLUTION

The aim of this section is to derive equations that describe
the time evolution of the system for each of three considered
rules. Let us denote by N↑(t) the number of voters in the +1
state (up-spins) at time t and by N↓(t) the number of voters in
the −1 state (down-spins). The total number N of spins in a
system does not change and we can define the concentration
of up-spins at time t as

c(t) = N↑(t)

N
. (7)

Since all individuals keep the same state on both levels and
we consider a duplex clique, we can simplify our analysis by
considering the concentration c(t) only on one level. However,
we need to stress that the changes of the state of the node
occur under the influence of both levels. In a single time step
�t three scenarios are possible: the number of up-spins N↑(t)
will either increase by 1, decrease by 1, or remain constant.
Simultaneously the concentration c(t) increases or decreases
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by 1
N

or remains constant:

γ +(c) = Pr

{
c(t + �t ) = c(t) + 1

N

}
,

γ −(c) = Pr

{
c(t + �t ) = c(t) − 1

N

}
, (8)

γ 0(c) = Pr{c(t + �t ) = c(t)} = 1 − γ +(c) − γ −(c).

The time evolution of the average concentration is given by
the rate equation:

〈c(t + �t )〉 = 〈c(t)〉 + 1

N
[γ +(c) − γ −(c)], (9)

where the exact formulas for probabilities γ +(c) and γ −(c)
depend on the applied rule. In the following part of the paper,
we use the abbreviated notation replacing γ +(c) by γ +, γ −(c)
by γ −, and c(t) by c. Explicit forms of probabilities γ +,γ −
are the following.

(i) GLOBAL&AND:

γ + = (1 − p)(1 − c)c2q + p(1 − c)/2,

γ − = (1 − p)c(1 − c)2q + pc/2. (10)

The first component describes conformity, where the change of
the state is possible only when two lobbies of size q each (i.e.,
the total number of agents is equal to 2q) possess the opposite
state than the state of the voter. The second component is
responsible for the change due to independence.

(ii) GLOBAL&OR:

γ + = (1 − p)(1 − c)

[
2

k=q−1∑
k=1

(
q

k

)
cq+k(1 − c)q−k + c2q

]

+ p(1 − c)

2
,

γ − = (1 − p)c

[
2

k=q−1∑
k=1

(
q

k

)
(1 − c)q+kcq−k + (1 − c)2q

]

+ pc

2
. (11)

Since in the OR case agreement just one lobby is needed, the
sum in the above equations reflects all possible states in which
all agents in the q-lobby on the one level possess the state
opposite to the state of the voter, and simultaneously the q-
lobby on the second level is not homogeneous. TheGLOBAL&OR
rule for q = 2 indicates change of the voter’s state if three or
four of the four agents (two from each level) possess the same
state, and therefore it is equivalent to majority rule [40–43]. For
q > 2 majority rule is not enough since changes are possible
only when at least one lobby is homogeneous, e.g.,

↓↓↓
↓↑↑ ⇑ 1−p−→ ↓↓↓

↓↑↑ ⇓ . (12)

This fact is direct reason why in the following example there
is no change of state:

↓↑↓
↓↑↓ ⇑ 1−p−→ ↓↑↓

↓↑↓ ⇑ . (13)

(iii) LOCAL&AND:

γ + = (1 − p)2(1 − c)c2q: +p(1 − p)(1 − c)cq + p2(1 − c)

4
,

γ − = (1 − p)2c(1 − c)2q + p(1 − p)c(1 − c)q + p2c

4
. (14)

Here we have three components: the first describes the situation
when the voter behaves like a conformist on both levels, the
last one corresponds to the case where on both levels the voter
is independent. The second term in Eq.(14) is a mixed one:
the voter behaves as a conformist [(1 − p)cq] on one level and
simultaneously it is independent on the second level (p/2).
We multiple this middle term by 2 since this situation can
appear in two configurations: conformist on the first level and
independent on the second and vice versa.

V. RESULTS

Solving analytically the rate equation (9) in general (i.e.,
for arbitrary q) is a difficult task. However, it is easy to obtain
a numerical solution by iterating Eq. (9). In such a way we can
obtain the time evolution of the average concentration 〈c(t)〉,
as well as the stationary value 〈c〉. The magnetization m(t)
defined by Eq. (2) is directly related to the concentration c(t),

m(t) = N↑(t) − N↓(t)

N
= 2c(t) − 1, (15)

and therefore using the rate equation (9) we can easily find
also the average magnetization. Independently, we can obtain
results by conducting Monte Carlo simulations and calculating
the ensemble average of the magnetization defined by Eq. (3).

Relations between the average magnetization in the sta-
tionary state 〈m〉 and the stochastic noise p, obtained by
two methods (numerical solutions of analytical formulas and
Monte Carlo simulations), are presented in Figs. 7, 8, and 9.
It is seen that the agreement between the Monte Carlo (MC)
results obtained for system size N = 104 and the numerical
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FIG. 7. (Color online) The average magnetization 〈m〉 as a func-
tion of the stochastic noise p for the GLOBAL&AND rule on the
duplex clique. Monte Carlo results (empty symbols) were obtained
for a system of size N = 104 and averaged over 103 samples. The
numerical solutions of Eq. (9) are marked with full symbols.
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FIG. 8. (Color online) The average magnetization 〈m〉 as a func-
tion of the stochastic noise p for the GLOBAL&OR rule on the duplex
clique. Monte Carlo results (empty symbols) were obtained for
a system of size N = 104 and averaged over 103 samples. The
numerical solutions of Eq. (9) are marked with full symbols.

solution of Eq. (9) for the infinite system size (N → ∞) is
satisfactory.

However, a small gap between MC and numerical results
can be seen. One could ask if the gap is an artifact of the
finite system size or not. As can be seen in Fig. 10 it is
indeed a finite-size effect. In this figure we present results for
different system sizes in the case of the LOCAL&AND rule with
q = 3. Obviously, increasing the system size we approach the
numerical results for the infinite system. Moreover, using the
finite-size scaling technique we are able to identify the “real”
critical value of independence that coincides with the value
obtained from Eq. (9) for the infinite system and to determine
critical exponents ν and β. However, the exact values of these
exponents depend not only on the version and parameters of
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FIG. 9. (Color online) The average magnetization 〈m〉 as a func-
tion of the stochastic noise p for the LOCAL&AND rule on the duplex
clique. Monte Carlo results (empty symbols) were obtained for
a system of size N = 104 and averaged over 103 samples. The
numerical solutions of Eq. (9) are marked with full symbols.
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FIG. 10. (Color online) The average magnetization 〈m〉 as a
function of stochastic noise p for the LOCAL&AND rule on the duplex
clique for q = 3 and several system sizes N . The solid line represents
numerical results obtained from Eq. (9) for the infinite system.
Rescaled results using the finite-size scaling technique are presented
in the right panel. In this case the critical value of independence can
be estimated as pc ≈ 0.55 and coincides with the numerical result for
the infinite system. Critical exponents are β ≈ 0.5 and ν ≈ 2.0 for
this version of the model with q = 3.

the model but also on the network structure, and this depen-
dence does not seem to be trivial [44]. Therefore, another task
that could be considered in the future is the exact relation
between the finite-size scaling exponents and the parameters
of the model.

VI. PHASE TRANSITIONS

Due to the Landau theory, to describe any kind of a phase
transition we can introduce the quantity that measure the
degree of order (order parameter) [45,46]. Although originally
Landau theory was created to describe continuous phase
transitions [45], the theory can be used also in the case of
discontinuous phase transitions [46]. An order parameter,
introduced to distinguish between two phases, is equal to 1
in the completely ordered state, decreases as a function of the
deviation from the order, and becomes zero in the disordered
phase. Therefore for our system the natural choice of the order
parameter is an average magnetization 〈m〉.

It is seen in Figs. 7, 8, and 9 that for all three rules
GLOBAL&AND, GLOBAL&OR, and LOCAL&AND, the system under-
goes the phase transition. Below the transition point p = pc,
the average magnetization 〈m〉 (order parameter) is not equal to
zero, and above the transition point 〈m〉 = 0. For GLOBAL&AND
(see full symbols in Fig. 7) the transition changes its type
from continuous to discontinuous at q = 3, which corresponds
to q = 6 for the monoplex clique and thus agrees with
results obtained in [13]. Analogously, for GLOBAL&OR (see full
symbols in Fig. 8) the transition changes its type also at q = 6.
However, for LOCAL&AND (see full symbols in Fig. 9), the
transition changes its type from continuous to discontinuous
already at q = 5. Moreover, the transition point is much higher
than for the remaining two rules. The aim of this section is to
determine the relation between the threshold value pc and
parameter q for all three rules and to better understand the
nature of the observed phase transitions. We would like to
stress here that, although at this point the claims of continuous
or discontinuous transitions are solely supported by Figs. 7, 8,
and 9, a more thorough analysis is conducted below to support
these claims.
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FIG. 11. (Color online) The relation between the critical value of
the stochastic noise pc and parameter q for different variants of the
model.

We can obtain the the transition point p = pc directly
from the Landau definition of an order parameter 〈m〉 using
numerical solutions of Eq. (9) or Monte Carlo simulations.
Because, as seen in Figs. 7, 8, and 9, the agreement between
Monte Carlo and numerical stationary solutions of Eq. (9) is
very good, we determine pc from Eq. (9), which is not only
much faster but also a more accurate method. Figure 11 shows
the relation between the critical value of noise pc and the size
of the q-lobby.

It is obvious why GLOBAL&AND gives always a lower value
of pc(q) than GLOBAL&OR. In the former case, unanimous
q-panels have to be chosen on both levels, which is less
probable than choosing a unanimous q-panel only on one
level. Therefore the order is more easily destroyed for the
GLOBAL&AND rule, which results in a lower value of pc(q).
Only for q = 1 is the critical value of noise, p, the same for
both rules; in this case, for both rules the change of the voter’s
state can take place only if the neighbors, chosen from the first
and the second level, possess the same state and the opposite of
the voter’s state. Otherwise, for the GLOBAL&AND rule a voter
is confused and does not change. It is also seen that the value
of pc(q) for GLOBAL&AND is exactly the same as pc(2q) for a
monoplex, for which the critical value of the noise for q � 5
has been derived analytically [13]:

pc(q) = q − 1

q − 1 + 2q−1
. (16)

The highest value of pc(q) is obtained for LOCAL&AND. This
case is not so easy to analyze heuristically and is certainly
the most interesting, among the considered rules. For both
GLOBAL rules the multiplex could be in fact replaced by the
monoplex network. In the case of GLOBAL&AND, as already
mentioned, we could simply consider the q-voter on the
monoplex with doubled size of the q-lobby. The GLOBAL&OR
is less trivial but still could be probably reformulated in terms
of the q-voter model with the threshold on the monoplex [20].
The case of LOCAL independence is not only less trivial, but
also the most interesting from the social point of view. It
should be remembered that conformity (and simultaneously
independence) is relative, i.e., individuals always conform in

respect to the particular social group and there are many factors
that influence the level of conformity [5,47–49]. It means that
the same individual may conform to one group and behave
independently with respect to another. For example it has been
shown, on the basis of various social experiments, that the level
of conformity is much higher in the face-to-face condition than
in computer-mediated communication [47,48]. Hence the idea
of local independence is highly justified in modeling social
systems. Moreover, we do not see any possibility to replace
a duplex by a monoplex network in this case, whereas in the
other two cases such a mapping is straightforward, as already
discussed.

Therefore, we will now concentrate on the LOCAL&AND rule
and discuss the phase transition more thoroughly in this case.
First of all let us notice that

F = γ + − γ − (17)

can be treated, analogously as in [13], as an effective force:
γ + drives the system to the state “spins up,” while γ − to
“spins down.” Therefore, inserting explicit forms of γ +,γ −
from Eq. (14), we calculate also an effective potential:

V = −
∫

F dc

= p(1 − p){q[(1 − c)cq−1 + c(1 − c)q−1]

− [cq − (1 − c)q]} + (1 − p)2{2q[(1 − c)c2q−1

+ c(1 − c)2q−1] − [c2q − (1 − c)2q]} − p2/2. (18)

To find the critical value of the stochastic noise pc and the
threshold value q̃, above which the transition becomes discon-
tinuous, we could now use the Landau approach, analogously
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FIG. 12. An effective potential V , given by Eq. (18), as a function
of concentration c for the LOCAL&AND rule and q = 4. (a) For small
values of noise p (here p = 0.4) the potential has two minima
that correspond to ordered states (i.e., c �= 1/2 and simultaneously
m �= 0). (b) With increasing p (here p = 0.44), minima are getting
shallower and areapproaching each other. (c) Eventually (p ≈ 0.47)
they form a single minimum that corresponds to the new disordered
phase. (d) Further increase of p (here p = 0.5) results in deepening
the minimum. This is a typical behavior for a continuous phase
transition.
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FIG. 13. An effective potential V , given by Eq. (18), as a function
of c for the LOCAL&AND rule and q = 5. (a) For small values of noise
p (here p = 0.3) the potential has two minima that correspond to
ordered states (i.e., c �= 1/2 and simultaneously m �= 0). (a) For larger
p (here p = 0.38) the third minimum (that corresponds to the new
disordered phase) appears. Initially [for p ∈ (p∗

1 ,p
∗
2)] the minima,

that correspond to an ordered phase, are deeper than the middle one;
i.e., the disordered state is metastable. (c) For p = p∗

2 ≈ 0.388 all
three minima are equally deep; i.e., ordered and disordered states
are equally probable, which corresponds to the discontinuous phase
transition. For p ∈ (p∗

2 ,p
∗
3) the potential has still three minima, but

now two ordered states are metastable. (d) Finally, for p ∈ (p∗
3 ,1)

(here p = 0.45) the potential has only one minimum that corresponds
to the disordered phase. Between spinodal lines, i.e., for p ∈ (p∗

1,p
∗
3)

one can expect hysteresis, and indeed it was found in Monte Carlo
simulations (see Fig. 14).

as in [13]. To do this we first rewrite the potential (18) in terms
of magnetization m, using relation (15), and then expand it
into a power series around m = 0. Unfortunately, the form of
the potential is much more complex in this case than for the
q-voter model on the monoplex [13]. Therefore all formulas
are much longer and more difficult to analyze. To understand
the nature of the phase transition, it is much easier and more
illustrative to draw potential V as a function of c for different
values of p and q (see Figs. 12 and 13).

For q < q̃ = 5 (see Fig. 12) the potential, given by Eq. (18),
behaves typically for a continuous phase transition. Below the
transition point the potential has two minima that correspond to
ordered states (i.e., c �= 1/2 and simultaneously m �= 0). With
increasing p, minima are getting shallower and approaching
each other. Eventually they form a single minimum that
corresponds to the new disordered phase. For q � q̃ the
potential indicates a discontinuous phase transition. For small
values of noise p the potential has two minima that correspond
to ordered states (i.e., c �= 1/2 and simultaneously m �= 0).
For larger p the third minimum (that corresponds to the
new disordered phase) appears. Initially [for p ∈ (p∗

1,p
∗
2)]

the minima that correspond to an ordered phase are deeper
than the middle one, i.e., the disordered state is metastable.
For p = p∗

2 all three minima are equally deep; i.e., ordered
and disordered states are equally probable, which corresponds
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FIG. 14. (Color online) The average magnetization 〈|m|〉 as a
function of the stochastic noise p for the LOCAL&AND rule and
q = 5 obtained from Monte Carlo simulations. Two different initial
states were considered: “polarized,” i.e., ordered state with m = 1,
and “random,” i.e., disordered state with m = 0. As expected for a
discontinuous phase transition (see Fig. 13), hysteresis is observed.

to the discontinuous phase transition. For p ∈ (p∗
2,p

∗
3) the

potential has still three minima, but now two ordered states are
metastable. Finally, for p ∈ (p∗

3,1) the potential has only one
minimum that corresponds to the disordered phase. Between
the spinodal lines, i.e., for p ∈ (p∗

1,p
∗
3), one can expect

hysteresis, and indeed it was found in Monte Carlo simulations
(see Fig. 14).

The evidence of the first-order transitions for q = 5 can
be obtained also from MC simulations using the finite-size
scaling technique. We should be able to observe a jump of the
order parameter at the transition point, and this jump should
tend to a positive constant which is equal to the jump m(p∗) for
the infinite system. Until now—see Figs. 7, 8, and 9—we have
averaged results over samples. Although, as we have checked,
an averaging over samples gives the same result as an averaging
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FIG. 15. Results for the LOCAL&AND rule and q = 5 from the
Monte Carlo simulations. Results were averaged over 104 samples
after the thermalization time of 104 Monte Carlo steps (MCS). Left
panel: dependence of the transition point p∗(N ) on the system size
N . It is seen that for N → ∞ the transition point p∗(N ) approaches
p∗ ≈ 0.3955, which agrees with the value obtained from the rate
equation for the infinite system. Right panel: a jump of the order
parameter at the transition point m(p∗) as a function of the system
size N . It is seen that for N → ∞ the jump approaches a positive
constant, which confirms a discontinuous phase transition.
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over time, the jump of the order parameter is seen more clearly
in the case of the time average, especially for small systems.
Therefore, to determine the size of the jump m(p∗) for various
sizes N , we have used the time average. It is seen in Fig. 15 that
indeed for N → ∞ the jump approaches a positive constant,
which confirms a discontinuous phase transition.

VII. L-LEVEL CLIQUE

The result that a switch from a continuous to a discontinuous
phase transition occurs for q = 5 instead of q = 6 is obtained
mainly from the Landau approach. It is confirmed by MC
simulations, but an intuitive understanding of this fact is
still missing. One possible explanation is that adding another
level is similar to adding another dimension. In equilibrium
statistical mechanics it is common that systems exhibiting
a discontinuous phase transition in high space dimensions
may display a continuous transition below a certain critical
dimension [50]. An analogous phenomenon could be observed
here. This would explain the fact that the system with q = 5 in
a “higher dimension” undergoes a discontinuous phase tran-
sition instead of a continuous one as in a “lower dimension.”
To validate this intuition we now consider the LOCAL&AND rule
on an L-level clique. In such a case the network consists of
L distinct levels, each of which is represented by a complete
graph (i.e., a clique) of size N , and the probabilities of gain
and loss can be written as

γ + = (1 − c)

[
i=L∑
i=0

(
L

i

)
pL−i

(
1

2

)L−i

[(1 − p)cq]i
]
,

γ − = c

[
i=L∑
i=0

(
L

i

)
pL−i

(
1

2

)L−i

[(1 − p)(1 − c)q]i
]
.

(19)

For L = 1 the above equation reduces to the rate equation
formulated by Nyczka et al. [20] and for L = 2 the equation
is equivalent to Eq. (14). The steady value of concentration
[or equivalently magnetization, if we use relation (15)] can
be obtained from iterations of the rate equation (9), as
we previously have done for L = 2, or alternatively by
numerically solving the equation

γ + − γ − = 0. (20)

It turns out that, for q < q̃(L) and p < pc, Eq. (20) has two
stable solutions m+ = −m− �= 0, whereas for p > pc it as
one stable solution m0 = 0. For q � q̃ the situation is more
complicated. For small values of noise (p < p∗

1) there are again
two stable solutions m+ = −m− �= 0, whereas for large values
of noise (p > p∗

3) one stable solution m0 = 0. However, for
p ∈ (p∗

1,p
∗
3) there are three stable solutions m+ = −m− �=

0,m0 = 0 and two unstable ones m1 and m2, where m+ >

m1 > m0 and m0 > m2 > m−. Therefore the final state of the
system depends on the initial state (hysteresis):

(1) if the initial value of magnetization m(0) > m1 then
the system reaches the final ordered state with magnetization
m(∞) = m+,

(2) if m(0) < m2 then m(∞) = m−,
(3) if m2 < m(0) < m1 then the system reaches the final

state with m(∞) = 0.
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FIG. 16. Relation between the steady value of magnetization m

obtained from Eq. (20) with probabilities γ +,γ − given by Eq. (19) for
several values of L: (a) L = 1, (b) L = 2, (c) L = 3, and (d) L = 10.
On each panel the relation for q = 7,6,5,4,3 is presented (from left to
right). It is seen that for some values of q, specifically for q � q̃(L),
where (a) q̃(L = 1) = 6, (b) q̃(L = 2) = 5, (c) q̃(L = 3) = 4, and
(d) q̃(L > 3) = 4, there is an interval p ∈ (p∗

1,p
∗
3) in which Eq. (20)

has five solutions: three stable (solid lines) m+ = −m− �= 0, m0 = 0
and two unstable (dashed lines) m1 and m2, where m+ > m1 > m0

and m0 > m2 > m−.

This means that for q � q̃ the system undergoes a discon-
tinuous phase transition. It is seen in Fig. 16 that q̃(L = 1) = 6,
q̃(L = 2) = 5, and q̃(L � 3) = 4. Hence, as expected, the
critical value q̃—at which the transition switches from a
continuous to a discontinuous one—decreases with the number
of levels L, but only to the threshold value of L = 3.

Now we would like to comment on the social implications
of the obtained results, namely that the threshold size of the
group below which the transition is always continuous is equal
to q̃(L � 3) = 4. The “mysterious” group of four repeatedly
shows up in social sciences. For example, the optimal group
size for discussions, collaboration, etc., has been an issue
of interest for years, mainly from the management science
point of view. Already in the 1970s it was concluded from a
cross-sectional study that the optimal team size was between
four and five members [51]. Moreover, the size of the group
is also very important in the context of social influence. It
has been observed in a number of social experiments that for
social influence it is not only essential for the majority to be
unanimous but also of a sufficient size of about 3–5 people.
Increasing the size of the majority will have no additional
impact [52]. Certainly, this convergence may be accidental.
The question is if the threshold value, q̃, decreases in reality
with the number of levels of the social network. To the best
of our knowledge, this question has not been investigated
empirically to date. However, there is a more basic question
we have not answered yet: Will the regime-switching behavior
be observed for other topologies and not only for a complete
graph? Therefore in Sec. VIII we will consider other duplex
topologies.
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FIG. 17. (Color online) Average magnetization 〈|m|〉 as a function of the stochastic noise p for the LOCAL&AND rule. Two different initial
states are considered: “polarized,” i.e., an ordered state with |m(0)| = 1, and “random,” i.e., a disordered state with m(0) = 0. (a) Monoplex
network BA network, (b) duplex ER network with the absence of interlayer correlations, (c) duplex BA networks with positive 〈rlay〉 = 0.82,
and (d) negative interlayer correlations 〈rlay〉 = −0.13 are presented. Monte Carlo results were obtained for a system of size N = 5000 and
averaged over 200 samples. The average interlayer correlation was averaged over 200 samples.

VIII. DUPLEX NETWORKS

In this section we go beyond the duplex clique to check
to what extent our results are universal. To test if q̃ = 6 is
the universal value also for other monoplex topologies we
have conducted Monte Carlo simulations for the q-voter model
on monoplex Barabási-Albert (BA) scale-free networks and
monoplex Erdős-Rényi (ER) graphs. Indeed, the switch from
a continuous to a discontinuous phase transition is observed
at q = q̃ = 6 for both topologies (the hysteresis is visible in
Fig. 17), which indicates that q̃ does not depend on the degree
distribution.

Now the question is if adding another layer will shift q̃ = 6
to q̃ = 5, as in the case of a complete graph. Therefore we
consider a duplex which consists of two distinct levels, each
represented by a different BA network (or a different ER
graph). We consider not only different degree distributions on
each level (power-law or Poisson) but also different interlayer
correlations (i.e., Pearson correlation coefficients between the
degrees of nodes on the first and the second level) [53,54].
Consequently, we analyze selected duplex networks that
represent three different classes: (i) a duplex ER network with
the absence of interlayer correlations, (ii) a duplex BA network

with positive correlations, and (iii) a duplex BA network with
negative correlations. In all considered cases, we observe the
switch from a continuous to a discontinuous phase transition
at q̃ = 5, analogously as for the duplex clique. It is shown in
Fig. 17 that the hysteresis is observed in all cases for q = 5,
whereas it is not present for q = 4. These results suggest that
the relation between the type of the phase transition and the
critical value, q̃, does not depend on a particular topology but
only on the number of levels.

IX. CONCLUSIONS

We have generalized the q-voter model with independence
(stochastic noise) p to a duplex clique, i.e., a network that
consists of two distinct levels (layers), each of which is
represented by a complete graph (i.e., a clique) of size N .
Levels represent two different communities (e.g., Facebook
and school class), but are composed of exactly the same
people: each node possesses a counterpart node in the second
level. Such an assumption reflects the fact that we consider
fully overlapping levels, which is an idealistic scenario. We
also assume that each node possesses the same state on each
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level, which means that the society consists of nonhypocritical
individuals only. We have considered two criteria of level
dependence: one related to the status of independence (GLOBAL
vs LOCAL) and one related to peer pressure (AND vs OR).
The GLOBAL rule means that an agent is independent on both
levels, but the LOCAL rule admits a situation where a person
is independent in one clique but not in the other. Furthermore,
the AND dynamics is more restrictive and a node changes its
state only if both levels suggest changes; in the OR variant one
level is enough to change the state of an individual.

For all three considered rules (GLOBAL&AND, GLOBAL&OR,
and LOCAL&AND), the system undergoes a continuous order-
disorder phase transition at p = pc(q) for q < q̃ and a
discontinuous for q � q̃, where pc and q̃ are rule dependent.
The GLOBAL&AND rule leads to a trivial result, identical
with the monoplex case for a doubled value of q. For the
GLOBAL&OR dynamics, pc is larger than for the monoplex
network. However, q̃ is identical with the monoplex case,
i.e., q̃ = 6. In contrast to the other two rules, we find a
qualitative change for the LOCAL&AND rule, as the phase
transition becomes discontinuous for q̃ = 5. The case ofLOCAL
independence is not only less trivial, but also more interesting
and better justified from the social point of view. In particular, it
has been shown that the level of conformity during face-to-face
communication is significantly higher than during computer-
mediated communication such as the Internet [47,48].

This suggests that the LOCAL&AND rule is the most suitable
for real social systems. Certainly it could be further developed
by introducing different values of noise on each level. The
simplistic duplex clique topology, as introduced in this paper,
can be also modified to obtain a more general network. For
instance, one could consider partially overlapping cliques,
where some nodes possess no counternode on the second level.
Unfortunately, these modifications significantly complicate
the model by introducing additional parameters and therefore
are beyond the scope of this paper. However, even considering
such a simple model as the one presented here, we can observe
that a multiplex network can introduce significant differences
in opinion dynamics.

From the physical point of view, the LOCAL&AND rule is
the most interesting. For this rule a qualitative change is
observed: the threshold value of q, below which the phase
transition is continuous shifted from q̃ = 6 for monoplex
networks (including complete and random graphs, as well
as Barabasi-Albert networks) to q̃ = 5 for duplex structures.
The classification of phase transitions is one of the most
exiting topics in the field of statistical physics. One of the best
examples of interest is a recent hot debate on the type of the
phase transition in so-called explosive percolation [55–57].
However, for the q-voter model it seems to be clear that
there is a switch from a continuous to a discontinuous phase
transition, because it is analytically solvable at least in the

case of a complete graph [13]. The question that arose here
is why for a duplex network the switch from a discontinuous
to a continuous phase transition appears for lower q, which
means that an additional level facilitates a discontinuous phase
transition.

The mechanism that leads to a discontinuous transition, that
manifests as a jump of the order parameter, is usually related
to fluctuations. It is known that by increasing the number of
interacting neighbors the fluctuations are diminished and the
transitions become sharper [13,58,59]. In our opinion a similar
mechanism is observed here, although the ultimate, intuitive
understanding of the phenomena is still missing. There are
other possible causes of a discontinuous phase transition.
Sometimes a switch from a continuous to a discontinuous
phase transition is observed for a larger number of states
(like in the Potts model [60] or in a model of tactical
voting [61]). A switch from a continuous to a discontinuous
phase transition has been also observed in the SIR (susceptible-
infected-removed) model with cooperative co-infection [62],
in which the number of states for each individual is 9. It has
been suggested in this paper that the discontinuity of phase
transitions results from the fact that the “basic reproduction
ratio” (which applies to infinitesimally small initial epidemic
seeds) is smaller than the reproduction ratio that applies when
the fraction of infected is finite.

It seems that in our case an additional level plays a similar
role to an additional dimension, and therefore an increase of
the number of levels supports discontinuity. In equilibrium
statistical mechanics, it is common that systems which exhibit
a discontinuous phase transition in high space dimensions may
display a continuous transition below a certain upper critical
dimension [50]. An analogous phenomenon could be observed
here. This intuition has been confirmed by the results for an L-
level clique. Obviously, much more work is needed to confirm
our intuitions. However, our results suggest that LOCAL&AND
is the rule for which the multiplex topology cannot be reduced
to a monoplex, and—also for this reason—is probably the
most appropriate extension of the q-voter model to multiplex
networks.
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